

Eclipse technologies

The technologies
behind Eclipse

Marco Savard, neosapiens

Technologies

 Data: JDT, CDT, EMF, UML2, DTP, SDO..
 Process: XSD, TPTP, JET, ..
 GUI: SWT, JFace, GEF, GMF, ..

SWT
SWT is easier to use than Swing
SWT gives UIs that look more native
than Swing

SWT

 History
 Platforms
 Swing Comparison
 Class Hierarchy
 Layout
 Painting

SWT History

 IBM VisualAge/Smalltalk
 Lessons Learned from Smalltalk

– In Smalltalk, everything was emulated
– Common interactions, such as scrolling, typing, felt

differently
– Native OS features, such as DnD, language support,

partly implemented
– As new release of OS came out, their appearance

changed, leaving Smalltalk apps looking dated.
 CommonWidgets API, ancestor of SWT

SWT Platforms

 Within Eclipse:
– Runs everywhere Eclipse runs

 Outside Eclipse (standalone apps):
– Windows 2000, XP
– Linux (RedHat SuSE)
– Solaris (X/Motif)
– Mac (OS X 10.2)

Heavy and Lightweight components

 Heavyweight components: AWT
– Lowest-Common Denominator
– Few components!

 Lightweight components: Swing
– Always draw components
– Slow!

 Middleweight components: SWT
– Use native GUI libraries through JNI
– The pragmatic approach: use if available, draw

otherwise

Advantages over Swing

 Faster (native widgets already optimized)
 Memory efficient (widgets disposal)
 Real Windows Look and Feel
 More widgets available
 More up-to-date
 Simpler API: less classes (ex: buttons)
 Untyped Listeners
 Composition versus Aggregation
 Eclipse Public Licensed (Swing is proprietary)

High Performance

 SWT has been designed to be a "high
performance" GUI toolkit; faster, more
responsive and lighter on system resource
usage than Swing.

 Benchmarks: 3-4 more internal calls in Swing;
SWT calls are more efficient.

Native look and feel

 SWT, due to it's use of native widgets features
a native "look and feel"

 The same cannot be said of Swing, which must
be updated to mirror Operating System GUI
changes (such as theme or other look and feel
updates).

http://en.wikipedia.org/wiki/Look_and_feel

Swing Look-And-Feels

• Swing w/ Metal L&F • Swing w/ Windows XP
L&F

Swing versus SWT: find the
differences

• Swing w/ Windows XP
L&F

• Find the 9 differences!

• SWT by default

Swing versus SWT: find the
differences

• Swing w/ Windows L&F • SWT by default

5 43

6

7

1
2

8

9

Swing versus SWT: Windows 7

• Swing w/ Windows 7
L&F

• Breadcrumbs, Search
fields, views, work
well on SWT

Clean Design

 SWT designed by Erich Gamma, of the Design
Patterns Gang.

 Based on composite design pattern.
– Create the composite first (Shell, Group)
– The component’s constructor requires the

composite as parameter (Button, TextArea)

Drawbacks compared to Swing

 Resource disposal: programming (a little bit)
more difficult

 Native-widget limitations
– tables always have scrollbars, Windows limitations.

But Windows users have never seen a table without
scrollbard.

 Less platforms supported
– But the four platforms supported represent 99% of

the market!
 Naming conv.: JList, JText, better than SWT

Class hierarchy

 Object
– Widget

 Control (heavyweight)
– Button
– Label
– Composite

 Canvas
 Group
 Tree

 Item (lightweight)

 Object
– Component (AWT)

 Container (AWT)
– JComponent (Swing)

 JButton
 JLabel
 JPanel
 JTree

Class mapping
note: for one SWT class, often several Swing classes

 SWT
– Button
– ColorDialog
– Group
– Label
– MessageBox
– SashForm
– ScrolledComposite
– Text

 Swing
– JButton, JCheckBox,..
– JColorChooser
– JPanel
– JLabel
– JOptionPane
– JSplitPane
– JViewport
– JTextArea, JTextField

Swing Class Diagram



SWT Class Diagram



Class mapping (layout)

 SWT
– FillLayout
– RowLayout
– GridLayout
– FormLayout
– N/A

 Swing
– BorderLayout
– FlowLayout
– GridBagLayout
– N/A
– CardLayout

Classes w/o Swing counterparts (1)

Browser DateChooser

Expand Bar TreeTable

Tree T
Te

Tree

Classes w/o Swing counterparts (2)

Tray CoolBar

Also: DirectoryDialog, FontDialog, Wizard (Jface)
and many others..

Ref: http://www.eclipse.org/swt/widgets/

Tree T
Te

Tree

The facade class : SWT

 Defined constants
 More used then SwingConstants
 Example:

– Button b = new Button(parent, SWT.PUSH);
– b.setText(“OK”);
– //PUSH could be changed by RADIO, TOGGLE,

 Remarks:
– One class per concept
– composite required for construction
– No convenience constructor

Rules for disposing widgets

 1-If you create it, you dispose it.
– Tricks: add dispose() right after the constructor()
– Keep dispose() in the same method where widget

was created
 2-Disposing a parent disposes the children.

– In practice, dispose() is rare.

Painting

 Widgets (except Canvas) responsible for drawing
themselves (Deferred Update Strategy).

 Painting called by the OS when a region is damaged
(needs to be redraw)

– SWT: PaintListener()
– AWT: overrides paint() //callback method, don't call!
– Swing: paintComponent() //ditto

 Redraw(): Tell widgets are damaged
– Swing: repaint()

 Update(): force drawing (powerful, costy)
– Swing: paintImmediately() /= update(), callback method

The Event Loop

 SWT: apartment threading strategy: calling a
SWT object outside the UI thread throws a
SWTException;
– readAndDispatch(): read the next event
– sleep(): let CPU time to other threads if no events
– wake(): event loop wakes

 Long operations in dedicated thread
 Same model as Swing

Typed and Untyped Listeners

 Typed Listeners (like Swing):
– widget.addMouseListener(new MouseAdapter() {

 };
 Untyped Listeners:

– widget.addListener(SWT.Mouse, new Listener() {
 };
 Untyped listeners are generic, minimizes the

number of listeners on the same widgets.

Composition Pattern (1/2)

 In SWT, components cannot be created w/o
composite (composition)

 In Swing, components and composite are
created separately, and then associated
(aggregated).

 In SWT, no floating widgets, no shared widgets.
 In SWT, creation of objects always in the same

order (helps consistency among developers)
and no unnecessary .add() method.

Composition Pattern (2/2)

 The composite creates its components
 SWT:

– Group group = new Group(parent);
– Button b = new Button(group, SWT.PUSH);

 Swing:
– JButton b = new JButton(“OK”); //create child 1st?
– JPanel panel1 = new JPanel();
– panel1.add(b);
– panel2.add(b); // what happens ???

Quote from Bruce Eckel:

 "The proof is in the pudding. You rarely see an AWT
application, even most Swing apps are ugly and OS
strangers. You can get close but never close enough.
For example when MS added theme support in
Windows XP, SWT got those for free. There are more
and more SWT built applications appearing. In general,
why struggle to emulate pixel by pixel what Microsoft,
Apple, and all the Linux developers are doing for you?
Don't reinvent, use.”

Conclusion

 SWT has learned from the Swing’s mistakes
 SWT is simpler, faster, nicer, more efficient

than Swing
 Middleweight widgets: the best of two worlds
 Will eventually replace Swing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

